Embedded Software
Challenges for the Next 10 Years

Infineon Embedded Software Days
Munich, Sept. 29-30, 2003

Edward A. Lee

Professor

UC Berkeley

P] |
y i\l avVavTyelea
A A\ | = W W
| =l SIS IS

Chess: Center for Hybrid and Embedded Software Systems

Thesis

Embedded software is not just software on small computers.

Time and concurrency are essential in embedded software.
Platforms are essential in the design of embedded software.
Platforms need good modeling properties (mode/-based design).
Object-oriented design cannot provide these modeling properties.
Actor-oriented design of fers better concurrency and time.

Behavioral types offer a truly practical form of verification.

UC Berkeley, Edward Lee 2

Platforms

+__DSP systems
communications systems . applications

/T

A platformis a set
of designs (the
rectangles at the
right, e.g., the set of
all x86 binaries).

Mode/-based design
is specification of
designs in platforms
with useful modeling
properties (e.g.,
Simulink block
diagrams for control
systems).

BE models synchronous™, spF models
— models

actor-oriented maodels

|

| \. standard

cell Java byte code programs.
. desbgns
FPGA configurations i
. BB programs
| executables

‘execules

P 1.6GHz
FPGAs
microprocessors
silicon chips

Platforms \T%_'_—\j__\ e
Where the

Action Has Been:

Giving the red
platforms useful
modeling properties
(e.g. UML, MDA)

Getting from red
platforms to blue
platforms.

Simulink rmodels
BE thodale synchronous™, spF models
maodels actor-oriented models

synthesizable
VHOL programs

5 ‘f-f program
sl:‘;::lard Java byte code pmglk
deslgns
v
®BE programs

= ra

MiCIoprocessons

silicon chips

Planrfor.ms \m\ applications

/ \-__\
Where the
Action Will Be:
Giving the red

platforms useful
modeling properties

(via models of
computation)

standard
cell

daslgns

Java byte code programs

v
x86 programs

Getting from red
platforms to blue
platforms.

silicon chips

MICIOProcessorns

Abstraction

How abstract a
design is
depends on how
many refinement
relations
separate the
design from one
that is physically
realizable.

Three paintings by Piet Mondrian

Design Framework

A design framework is a collection of
platforms and realizable relations between
platforms where at least one of the
platforms is a set of physically realizable
designs, and for any design in any platform,
the transitive closure of the relations from
that design includes at least one physically
realizable design.

In mode/-based design, a specificationis a
point in a platform with useful modeling
properties.

UC Berkeley, Edward Lee 7

UML and MDA
Trying to Give Useful Modeling Properties to Object-Oriented Designs
10Port Interface is a
0.1 0.n collection of
! nterface methods and their
Receiver :
UML static ke whee | VD€ Slgnatures.
structure ——
d | a g ram +i:sRi7r(’7rar;?)e:,(l:L;oleag
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

Inheritance '—-} / e
3 Implementation I—}

«Interface»
Mailbox F i Qi Recei DEReceiver SDFReceiver
T T 1.1 1.1
= b 1.1
1.1 FIFOQueue ArrayFIFOQueue
CTi i CSPRecei! F i

UC Berkeley, Edward Lee 8

But These Are Fundamentally Rooted in a

Procedural Abstraction

+ Some Problems:
- 0O says little or nothing about concurrency and tim
- Components implement low-level communication protocols
- Re-use potential is disappointing
Some Partial Solutions
- Adapter objects (laborious to design and deploy)
- Model-driven architecture (still fundamentally OO)
- Executable UML (little or no useful modeling properties)
Our Solution: Actor-Oriented Design

TextToSpeech

Text to Speech initialize(): void

i E}] O eech out notify(): void
ey o ‘ isReady(): boolean
getSpeech(): double[]

Focus on this

OO interface definition gives procedures
actor-oriented interface definition says that have to be invoked in an order not
“Give me text and I'll give you speech” specified as part of the interface definition.

The Turing Abstraction of Computation

h arguments + state in

/1
/1
/1
/1
/1
/1

‘ results + state out

sequence f: State — State

Everything "computable” can be given

by a terminating sequential program.

UC Berkeley, Edward Lee 10

Timing is Irrelevant

All we need is terminating sequences of state
transformations! Simple mathematical structure:
function composition.

UC Berkeley, Edward Lee 11

What about “real time"?

e 4

Make it faster!

UC Berkeley, Edward Lee 12

Worse: Processes & Threads are a
Terrible Way to Specify Concurrency

For embedded software,
these are typically
nonterminating
computations. Infinite sequences of
state transformations
. : are called "processes”
|nC0m|ng meSSage |::> or \\Thr‘eadsu
Their “interface” to
the outside is a
sequence of messages
in or out.

outgoing message <—

UC Berkeley, Edward Lee 13

Interacting Processes Impose Partial Ordering
Constraints on Each Other

Note that UML sequence ||
and activity diagrams
(major ways of
expressing concurrency in
UML), follow this model.

}stalled by precedence

J

timing dependence

J

stalled for rendezvous

(NN

UC Berkeley, Edward Lee 14

Interacting Processes Impose Partial Ordering
Constraints on External Interactions

After composition:
External interactions
are no longer ordered.

iyl

An aggregation of
processes is not a
process. What is it?

f

IIII IIIIII ‘III

§ 1

UC Berkeley, Edward Lee 15

public void addChangelistener (ChangelListener listener) { |
NawedChj container = (NawedChj) getContaineri():
if (container != null) |
container. addChangelistener (listener) »
1 else {
if [_changslListeners == null)] {
_changelisteners = new LinkedLisci):
_changelisteners.add(0, listener):
} else if (! changelListeners.containsilistener)) {
_changelisteners.add(0, listener):

A Story: Code ReView in the CHess Software Lab

Code Review in the Chess Software Lab

A Typical Story

Code review discovers that a method needs to be
synchronized to ensure that multiple threads do not
reverse each other's actions.

No problems had been detected in 4 years of using the

code.

Three days after making the change, users started
reporting deadlocks caused by the new mutex.

Analysis of the deadlock takes weeks, and a correction

is difficult.

public void addChangelistener (Changelistener listener) {

NamwedOb] container = (NawedObj) getContainer():

if (container != null) {
container.addChangelistener (listener) ;

} else {

if | changelisteners —= null) {
“changelisteners = new LinkedList () :
“changelisteners.add(0, listensr):
} else if {! changelisteners.contains |listenex)) {
_changelisteners.add(0, listensr):
¥
¥
}

UC Berkeley, Edward Lee 17

What it Feels Like to Use the synchronized

Keyword in Java

software and disk drives, Scientific American, September 1999.

Image “borrowed” from an Iomega advertisement for Y2K

UC Berkeley, Edward Lee 18

Threads, Mutexes, and Semaphores are a Terrible
Basis for Concurrent Software Architectures

o, '\\ [==
o - . ' 4 -
SRR ! e

Ad hoc composition. Yet this is the basis for RTOS-based embedded

software design.
UC Berkeley, Edward Lee 19

Is There a Better Mechanism?

UC Berkeley, Edward Lee 20

Focus on Actor-Oriented Design

- Object orientation:

What flows through
class name an object is
data sequential control
p methods
call return
« Actor orientation: What flows through
an object is
actor name streams of data
data (state)
- parameters ‘
Input data borts Output data

UC Berkeley, Edward Lee 21

Example of Actor-Oriented Design
(in this case, with a visual syntax)

Director from a library

PTOlemy II example: defines component

By B[ki . interaction semantics
[#-] matrix stimate the spectrum of threi
[=-_4 signal processing by three different techniques. Synchronous Dataflow Modelin
-] audia Y 9
communications Sinewave Spectrum
#-] ftering AddSubtract This example illustrates SDF modeling, which
[#-__| image processing is well-suited to signal processing. In SDF,
=4 spectrum components communicate using streams, but their

DE

SmoothedPeriodogfam Production and consumption rates are fixed.
Because of these fixed rates, exiensive static
analysis of the model is possible, enabling
efficient code generation and optimization.
MaximumEntropySpgctrum

[I=] Levinsonburbin
MaximumEntropySpm
Perindogram
L[] Praselnwrap

#

SequencePlotter
Eo e

Large, domain-polymorphic Component

component library.

Model of Computation:
Key idea. The model of computation is part of the * Messaging schema
framework within which components are embedded * Flow of control
rather than part of the components themselves. Thus, - Concurrency
components need to declare behavioral properties.

UC Berkeley, Edward Lee 22

Examples of Actor-Oriented
Component Frameworks

Simulink (The MathWorks)

Labview (National Instruments)

Modelica (Linkoping)

SystemC + Comm Libraries (Various)

VHDL, Verilog (Various)

SPW, signal processing worksystem (Cadence)
System studio (Synopsys)

ROOM, real-time object-oriented modeling (Rational)
OCP, open control platform (Boeing)

Easy5 (Boeing)

Port-based objects (U of Maryland)

I/0 automata (MIT)

Polis & Metropolis (UC Berkeley)

Ptolemy & Ptolemy IT (UC Berkeley)

UC Berkeley, Edward Lee 23

Actor View of
Producer/Consumer Components

Basic Transport: Models of Computation:

receiver.put(t)

send(0.t * push/pull
* continuous-time
* dataflow
* rendezvous
Receiver * discrete events
(inside port)

* synchronous

* time-driven

* publish/subscribe

IORelation

Many actor-oriented frameworks
assume a producer/consumer metaphor
for component interaction.

UC Berkeley, Edward Lee 24

Actor Orientation vs. Object Orientation

. ObJec‘r Orientation
- procedural interfaces
- aclass is a type (static structure)
- type checking for composition
- separation of interface from implementation

- subtyping This vision of the
- polymorphism future offers a truly
practical form of
+ Actor Orientation verification, an
- concurrent interfaces extension of modern
- a behavior is a type type systems.

- type checking for composition of behaviors

- separation of behavioral interface from implementation

- behavioral subtyping

- behavioral polymorphism - Focus on this

UC Berkeley, Edward Lee 25

Polymorphism

Data polymorphism:

Add numbers (int, float, double, Complex)

Add strings (concatenation)

Add composite types (arrays, records, matrices)
Add user-defined types

Behavioral polymorphism:

In dataflow, add when all connected inputs have data

In a time-triggered model, add when the clock ticks

In discrete-event, add when any connected input has
data, and add in zero time

In process networks, execute an infinite loop in a thread
that blocks when reading empty inputs

In CSP, execute an infinite loop that performs
rendezvous on input or output

In push/pull, ports are push or pull (declared or inferred)
and behave accordingly

In real-time CORBA, priorities are associated with ports
and a dispatcher determines when to add

AddSubtract
B+
o —

-

By not choosing
among these
when defining
the component,
we get a huge
increment in
component re-
usability. But
how do we
ensure that the
component will
work in all these
circumstances?

UC Berkeley, Edward Lee 26

Object-Oriented Approach to Achieving
Behavioral Polymorphism

«Interface» These polymorphic methods
Receiver implement the communication
semantics of a domain in Ptolemy IT.

+got() - Token The receiver instance gsed in
+getContainer() : IOPort communication i1s supplled by the
+hasRoom() : boolean director, not by the component.
+hasToken() : boolean
+put(t : Token)
+setContainer(port : |OPort) Director

IOPort

Recall: Behavioral polymorphism
is the idea that components can be
defined to operate with multiple

models of computation and multiple Receiver
middleware frameworks.

consumer
actor

producer
actor

UC Berkeley, Edward Lee 27

Behavioral Polymorphism
The Object Oriented View

I0Port

0.1 0.n

«Interface»

" Recei
eceiver NoTokenException
throws
throws

+get() : Token

+getContainer() : IOPort
+hasRoom() : boolean
l nte rfa ce +hasToken() : boolean

+put(t : Token)
+setContainer(port : IOPort)

| Implementation} |

«Interface»
Mailbox F i Qi Recei DEReceiver SDFReceiver

H

CTReceiver CSPReceiver PNReceiver

1.1

FIFOQueue ArrayFIFOQueue

UC Berkeley, Edward Lee 28

But What If..

The component requires data at all —
connected input ports? o+
The component can only perform meaningful | "=

operations on two successive inputs?

The component can produce meaningful
output before the input is known (enabling it
to break potential deadlocks)?

The component has a mutex monitor with
another component (e.g. to access a common
hardware resource)?

None of these is expressed in the object-oriented
interface definition, yet each can interfere with
behavioral polymorphism.

UC Berkeley, Edward Lee 29

Behavioral Types -
A Practical Approach

+ Capture the dynamic interaction of components in types
*+ Obtain benefits analogous to data typing.
* Call the result behavioral types.

+ Communication has
Director - data types
- behavioral types
+ Components have

producer o - data type signatures

- behavioral type signatures
- Components are

- data polymorphic

- behaviorally polymorphic

I0Port

Receiver

UC Berkeley, Edward Lee 30

Behavioral Type System

We capture patterns of — -
component interaction in a Commqntlc;aftlon (S
type system framework. execution Interface ,’

interface
We describe interaction . Q
types and component . ’;
behavior using extended /nterface -
automata (de Alfaro & Henzinger) /¢ »
We do type checking through

1 2
OL‘*Q—‘—P hTF J
g
e Q »
automata composition (detect

a consumer actor.

Subtyping order is given by

the alternating simulation
relation, supporting behavioral polymorphism.

UC Berkeley, Edward Lee 31

Verification Via a Behavioral Type System

* Checking behavioral compatibility of
components that are composed.

» Checking behavioral compatibility of
components and their frameworks.

» Behavioral subtyping enables
interface/implementation separation.

* Helps with the definition of behaviorally-
polymorphic components.

UC Berkeley, Edward Lee 32

Enabled by Behavioral Polymorphism (1):
More Re-Usable Component Libraries

__Isources
_1sinks
“lio
__Imath
__Irandom
1 flow control
__Ireaitime
__llogic
I string
__lconversions
larray
I matrix
=4 signal processing
_laudio
| commurications
1 fitering
| image processing
B4 spectrum
DB
[e=] FFT
[e=] iFFT
[B=] Levinsanburbin
MasdmurmEntrapySp:
Periadagram
[Be] Phaselimwrap
SmacthedPariodagr
E Spectrum —
| statistical

[| domain specific
Y —

e Data polymorphic components
o Domain polymorphic components

actor

domains

JAIToDoubleMatrix
JAITranslate
JAITranspose

i sdf ‘
actor.lib } i
AbsoluteValue iib
Accumulator -
AddSubtract actor.ib.comm } actorlib.g ArayToSequence
ArrayAppend | Autocorrelation
ArrayElement ConvolutionalCoder i ArrayPlotter DelayLine
ArrayExtract eScrambler i ArrowKeySensor DotProduct
ArrayLength HadamardCode | BarGraph DownSample
Scrambler H Display FFT
ArrayM |
rapMimmum | ViterbiDecoder | HistogramPlotter FIR
Average ! InteractiveShell IFFT
0 KeystrokeSensor LMSAdaptive
Bemouli actor ibjai
Const LineCoder
Counter DoubleMatrixToJAl Plotter MatrixToSequence
B JAAfeTransform | | PlotterBase RaisedCosine
Differential JAIBMPWiter RealTimePlotter Repeat
DI JAIBandCombi SequencePlotter SemplDelsy
Expression JAIBandSelect SequenceScope equenceToArray
Gavssion ABorder SketchedSource SequenceToMatrix
IR JAIBoxFilter SliderSource UpSample
VariableFIR
Interpolats JAIConvol TimedPlotter
Lattica oo TimedScope VariableLattice
LevinsonDurbin JAIDCT XYPlotter VariableRecursiveLattice
imiter JAIDFT XYScope
LinearDifferenceEquationSystem | JAIDataCaster
LookupTable JAIEdgeDetection actor.libimage |-
MathFunction JAIIDCT |
Maxindex JAIDFT ImageDisplay |
Maximum JAllmageReader ImageReader | UML package
Minimum JAlimageToken ImageRotate | -
MuliplyDivide JAlinvert ImageToString | diagram of key
PhaseUnwrap JAIJPEGWriter Transform A .
PoissonClock JAlLog URLTomage actor libraries
ulse JAIMagnitude 7 .
Quantizer JAlMedianFilter po—— included with
RecursiveL attice JAIPeriodicShift ColorFinder Ptolemy 1.
Rician IPhase JMFImageToken i
Scale JAIPolarToComplex | | PlaySound]
TrigFunction JAIRotate VideoCamera |
Uniform JAIScale |
JAITIFFWriter i

actor lib javasound } rrrrr

AudioCapture
AudioPlayer
AudioReadBuffer
AudioReader
AudioWriteBuffer
AudioWriter

Berkeley, Edward Lee 33

Enabled by Behavioral Polymorphism (2):
Hierarchical Heterogeneity

Giotto director
indicates a new model of
computation.

| Giotto Director

motor_current

throttle_position

throttle_motor
P

monitor

servo_control

Heterogeneous model of the UC Berkeley Vehicle Dynar

Electronic Throttle Controller.

by Paul Griffiths, Christoph Kirsch, Tunc Simsek, Jason

Last updated January 15, 2002

CT Directar

I

throttle

powertrain inplits

user_mode

>

manager

pedal_position

Ea

throttle positi n:r;I

Domain-polymorphic component.

icontroller

Domains can be
nested and mixed.

UC Berkeley, Edward Lee 34

Enabled by Behavioral Polymorphism (3):

Modal Models

Giatto Director

thrattle_maotor

Ju

mator_current

throttle_position

s

__mananer

Periodic, time-driven tasks

Controller task

user_ma
Modal servo control.

throttle_positions

desired_throttle_position

mode

mode_isPresent A Mo

mode_isPresent¥ud préde ==2

servo_control_output

SDF Director

throttle_positions

Modes (normal & faulty)

mode

thrattle_paosition

sliding mode controller with estimator

AddSubtract
n current

UC Berkeley, Edward Lee 35

Enabled by Behavioral Polymorphism (4):

Mobile Models

Model-based distributed task management:

DE Director

TimedDelay
Const

PushConsumer

eorder:

S0

{1

Authors:

Yang Zhao

Steve Neuendorffer
Xiaojun Liu

R

PushConsumer actor receives
pushed data provided via CORBA,
where the data is an XML model of a
signal analysis algorithm.

MobileModel actor accepts a
StringToken containing an XML
description of a model. It then
executes that model on a stream of
input data.

Data andbehavioral type safety will help make such models secure

UC Berkeley, Edward Lee 36

... And More

* Refinement of communication between
actors
- supporting hardware/software codesign
- using fault tolerant bus protocols
- synthesizing custom hardware
- using middleware for distributed systems

* We are also working on expressing
temporal properties in behavioral types
- execution fime dependencies on state
- schedulability analysis

UC Berkeley, Edward Lee 37

Will Model-Based Design Yield Better Designs?

Not necessarily.

"Why isn't the answer XML, or
UML, or IP, or something like
that?"

Direct quote from a high-
ranking decision maker at a
large embedded systems i
company with global reach. B n I n - 'l

"New" is not -
better than "good"”

The Box, Eric Owen Moss

Mandating use of the wrong platform is far worse
than tolerating the use of multiple platforms.

UC Berkeley, Edward Lee 38

Source: Contemporary California Architects, P. Jodidio, Taschgh, 1995

Better Architecture is Enabled but not
Guaranteed by Model-Based Design

* Understandable * More re-usable
concurrency component libraries
Systematic * Models of computation
heterogeneity with time

UC Berkeley, Edward Lee 39

Conclusion - What to Remember

* Model-based design
- specification using platforms with useful modeling properties
Actor-oriented design
- concurrent components interacting via ports
* Models of computation
- principles of component interaction
Understandable concurrency
- compositional models
Behavioral types
- a practical approach to verification and interface definition
Behavioral polymorphism
- defining components for use in multiple contexts

http://ptolemy.eecs.berkeley.edu
http://chess.eecs.berkeley.edu

UC Berkeley, Edward Lee 40

Desirable Modeling Properties
in Actor-Oriented Design

For at least some models of computation:

* Closer to the application level
Compatibility of components with each other
Compatibility of components with the framework

Analyzable concurrency

- Deadlock detection

- Load balancing

- No semaphores or mutexes
Memory requirements
Schedulability analysis

- Timing properties

- Throughput analysis

- Latency analysis

UC Berkeley, Edward Lee 41

